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Summary

Photosynthetic eukaryotes thrive anywhere there is sunlight and water. But while such

organisms are exceptionally diverse in form and function, only one phototrophic lineage

succeeded in rising above its substrate: the land plants (embryophytes).Molecular phylogenetic

data show that land plants evolved from streptophyte algae most closely related to extant

Zygnematophyceae, andoneof the principal aims of plant evolutionary biology is to uncover the

key features of such algae that enabled this important transition. At the present time, however,

mosaic and reductive evolution blur our picture of the closest algal ancestors of plants. Here we

discuss recent progress and problems in inferring the biology of the algal progenitor of the

terrestrial photosynthetic macrobiome.

I. The singularity of plant terrestrialization

Over the billion-plus yr evolutionary history of photosynthetic
eukaryotes, awide range of algae successfully established themselves
on land. This includes members of the Chloroplastida (green
algae), but there are also reports of terrestrial Rhodophyta (red
algae) as well as complex plastid-bearing lineages such as diatoms
(Hoffmann, 1989; Raven& Edwards, 2014), the survival of which
appears to hinge on the formation of desiccation-tolerant resting
cells (Souffreau et al., 2013). Such algae possess various biochem-
ical and (photo-)physiological adaptations that enabled this
transition (see e.g. Holzinger & Karsten, 2013), and various lines
of evidence suggest that they evolved a terrestrial lifestyle multiple
times independently. Some of these lineages – including those that
lichenize – might even have been on land long before land plants

came to be (Raven & Edwards, 2014). Despite these independent
adaptations – especially within the green lineage (Lewis &
McCourt, 2004) – all of the terrestrial macroflora is derived from
a single clade within the Streptophyta (Wickett et al., 2014; Fig. 1).
Simply put, land plants evolved once; the biological significance of
this singularity is writ large across the surface of the globe.

Given that plants evolved from within streptophytes, there is
considerable interest in trying to reconstruct early land plant
evolution through the lens of streptophyte algae. Among the most
fundamental questions in the field are: which specific lineage of
streptophyte algae gave rise to the land plants; andwhat was it about
the biology of this lineage that enabled its conquest of land? The
answer to the first question is now in hand. The paraphyletic
streptophyte algae can be divided into the lower-branching
KCM-grade (Klebsormidiophyceae, Chlorokybophyceae and
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Mesostigmatophyceae) and the higher-branching ZCC-grade
(Zygnematophyceae, Coleochaetophyceae, and Charophyceae;
see Box 1, Fig. 1; also see de Vries et al., 2016). For some time it
seemed as though there had been a stepwise increase in organismal
complexity, from a unicellular alga like extant Mesostigma (see
Marin &Melkonian, 1999), through to simple filamentous forms
such asKlebsormidium andZygnema, on to pseudoparenchymatous

apical cell-bearing Coleochaete, and, finally, to a complex multicel-
lular organism like Chara, a stonewort with rhizoids and stem-like
structures (Fig. 1). However, recent phylogenomic analyses show a
sister relationship between land plants and the Zygnematophycae,
an enigmatic group of unicellular and filamentous algae that live in
a variety of freshwater and terrestrial environments (Wodniok
et al., 2011; Timme et al., 2012; Ruhfel et al., 2014; Wickett et al.,
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Fig. 1 Streptophyte terrestrialization and the colonization of terrestrial habitats by extant Chloroplastida. Approximately 1 billion yr ago, the green lineage
(Chloroplastida) split into the chlorophytes and streptophytes. The streptophytes consist of the monophyletic embryophytes (land plants) and paraphyletic
streptophyte algae; streptophyte algae can further be subdivided into the basal-branching Klebsormidiophyceae, Chlorokybophyceae, and
Mesostigmatophyceae (KCM) grade and the higher-branching Zygnematophyceae, Coleochaetophyceae, and Charophyceae (ZCC) grade. Chlorophytes
occur in a variety ofmarine, freshwater and terrestrial environments. Streptophyte algae are found in freshwater and terrestrial habitats, for example, inwet soil
or on rock surfaces, down in the sediment of lakes and streams (Charophyceae) or on these as algalmats (Zygnematophyceae); someColeochaetophycae even
grow as epiphytes on Charophyceae. Note also that various extant chloroplastidial algae grow on land plants (e.g. on tree barks). While the ability to dwell in
terrestrial habitats exists across the diversity of Chloroplastida, only the land plants dominate the macrobiome of the Earth’s surface, unparalleled in their
morphological and species richness. Inferring the traits of the algal ancestor of land plants – a groupof organisms closely related to extant Zygnematophyceae –
requires assessment of the biology of ZCC grade streptophyte algae. The emerging consensus is that it was an organismwith branching filaments (or perhaps
even pseudoparenchymatous growth) that interacted with beneficial (substrate) microbiota, probably including the ancestors of mycorrhizal fungi. The algal
embryophyte progenitor probably also possessed a physiology that allowed it to copewith terrestrial stressors such as drought/desiccation, high ultraviolet and
photosynthetic irradiance, and rapid temperature changes.
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2014). Given that the Zygnematophyceae have the least complex
bodyplan of all higher-branching streptophyte algae (i.e. the ZCC
grade), this comes as something of a surprise. As we shall see,
inferring the evolution of traits along the trajectory of streptophyte
evolution has proved challenging.

The second question is much more difficult. Evolution is a
dynamic process; extant organisms are snapshots in time and
provide only static, and often misleading, information about how
they came to be. In order to infer the features of streptophyte algae
that were relevant to the conquest of land, one needs not only to
consider present-day Zygnematophycae, but also to look at their
ancestry. To identify informative features, it is crucial to consider
what plant terrestrialization actually means. In thinking about the
success of land plants, obviously adaptive traits such as the
presence of desiccation-tolerant seeds, vascular tissues (which
conduct water and provide stability), and gas-exchanging stomata
quickly come to mind. These are certainly essential features of the
(homoiohydric; see Box 1) plant cormus – the true plant body –
and > 400 million-yr-old fossils exhibiting many of these prop-
erties have been found (reviewed by Gensel, 2008). However, the
cormus arose within land plants; the aforementioned features are
hence the subject of the evolution of plants on land. Towards a
complete understanding of land plant evolution we must also

consider what came about before such features arose. The question
is more than what the first vegetative body looked like. It is a
physiological question about how the organisms that eventually
gave rise to land plants overcame the challenges associated with
dry land (reviewed by Delwiche & Cooper, 2015). Cellular
physiology and bodyplan evolution are in fact two sides of the
same coin: a more complex bodyplan allows for cellular
differentiation, which later proved to be essential for the evolution
of specific tissues (e.g. water-conducing vasculature) and land
plant homoiohydry. But the algal ancestor of embryophytes was a
poikilohydric organism – just like any other (extant) terrestrial
microalga, which can also grow in diverse and challenging
environments.

The algal progenitor of embryophytes did more than just dwell
in a terrestrial habitat such as moist soil or rock. It conquered all
parts terra firma, presumably in a stepwise fashion. What
physiological properties allowed the first land plants to thrive such
that the complex adaptations so familiar to plant biologists could
evolve? Here we discuss some of the concepts and challenges
associated with inferring early steps in land plant evolution.

II. Adaptation vs exaptation – what shaped the land
plant toolkit?

Dry land is a high-stress environment. This is especially true for
photosynthetic organisms, which first evolved in aquatic habitats.
On land, light is not filtered by water (Maberly, 2014; Fig. 1); high
irradiance is thus an inescapable threat, increasing the risk of
photooxidative and UV damage (see, e.g., Karsten & Holzinger,
2014). Furthermore, stressors such as drought and severe cold
(including freezing) directly impact photosynthetic performance
and are among the key inducers of plastid-nucleus communication
(for review see Chan et al., 2016; see Rippin et al., 2017 for a recent
overview of the pronounced impact of desiccation stress on gene
expression in streptophyte algal photosynthesis). But while mod-
ern-day plastids are hard-wired into the stress response signaling
pathways of the cell (see also de Vries et al., 2016), various other
plastid-independent features of the algal cell are thought to have
aided the process of terrestrialization.

Foremost among such properties is the evolution of a sturdy cell
wall, undoubtedly a useful trait on land. Certain cell wall
reinforcements and modifications are key during dehydration
stress (Kroken et al., 1996; Holzinger & Karsten, 2013; Herburger
& Holzinger, 2015). They can also provide stability and allow for
the development of asymmetric structures (see Harholt et al.,
2016). Streptophyte algae – especially those of the ZCC grade – are
noteworthy in containing cell walls with lignin-like components
(Delwiche et al., 1989), a feature that resembles land plants. This is
underscored by the presence of sporopollenin (see Box 1) in zygotes
of Zygnematophyceae (de Vries et al., 1983), Coleochaetophyceae
(Delwiche et al., 1989), and Charophyceae (Blackmore & Barnes,
1987). Furthermore, the cell wall polymer profiles of ZCC grade
streptophyte algaematch those of land plantsmore than do those of
the KCM grade (Sørensen et al., 2011). Streptophyte algae also
appear to possess the makings of a phenylpropanoid pathway (de
Vries et al., 2017), which is important given that phenolic

Box 1 Glossary

Chloroplastida – the monophyletic ‘green’ lineage consisting of the
chlorophytes (green algae) and streptophytes.
Homoiohydry – a dehydration-avoidance mechanism based on
active maintenance of water homeostasis – especially under water-
limiting conditions; the predominant mechanism employed by
vascular land plants to tolerate water limitations.
KCM grade – a paraphylum consisting of the basal-branching
streptophyte algal clades Klebsormidiophyceae, Chlorokybo-
phyceae, and Mesostigmatophyceae.
Phragmoplast – a scaffold of cytoskeletal components and vesicles
that is formed during anaphase/telophase; a textbook characteristic
of the land plant-type cell division.
Poikilohydry–passiveequilibrationof the cell’swater status to thatof
the environment; can lead to desiccation under water-limiting
conditions, which is tolerated by only some photosynthetic eukary-
otes such as certain algae (including some streptophyte algae),
lichens, mosses and very few vascular plants.
Preprophase band – an actin and tubulin scaffold that forms during
the end of theG2phase of Zygnematophyceae and land plants (for a
comprehensive discussion, see Buschmann & Zachgo, 2016).
Primary plasmodesmata – cell wall channels that are formed during
cell division (as opposed to secondary plasmodesmata, which are
formed independently of cell division).
Sporopollenin – the highly robustmaterial that coats spores of algae,
embryophytes, and fungi. It consists of a complex mixture of
biopolymers, including (but not limited to) phenolic compounds and
fatty acids; best known as the robust coating of pollen.
Streptophytes – a monophyletic group uniting the streptophyte
algae (also known as charophytes) and land plants.
ZCC grade – a paraphylum of the higher-branching streptophyte
algal clades Zygnematophyceae, Coleochaetophyceae, and Charo-
phyceae, which are sister to land plants.
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compounds are thought to shield against UV irradiance (Popper
et al., 2011). It also serves as a foundation for the evolution of land
planthomoiohydry,which is aidedbyphenylpropanoidderivatives.

Clearly the streptophyte ancestors of land plants were forced to
deal with stress. The elaborate stress signaling pathways of extant
land plants (see e.g. Song et al., 2016 or Scheres & van der Putten,
2017) speak to turbulent times during their early evolution. The
signaling pathways of land plants often depend on phytohormones.
Phytohormone-mediated signaling (homologous to that of land
plants) has been detected in various streptophyte algae (Delaux
et al., 2012; Hori et al., 2014; Ju et al., 2015; Van de Poel et al.,
2016; Ohtaka et al., 2017) and polar transport of the phytohor-
mone auxin has been shown for both Klebsormidium and Chara
(Boot et al., 2012; Ohtaka et al., 2017). Furthermore, comparative
genomic investigations reveal that the land plant common ancestor
possessed a complex gene expression regulatory network that
utilized 47 out of the 48 transcription factor families known from
modern-day land plants (Catarino et al., 2016). This has important
implications on various levels, including the evolution of morpho-
logical complexity (Lang et al., 2010; Breuninger et al., 2016). All
things considered, a substantial fraction of the (molecular)
physiological tools that land plants use when coping with the
challenges of terrestrial life can be seen in streptophyte algae.

But while streptophyte algae bear features that aid a terrestrial
lifestyle, some of these algae dwell on land and some do not (Fig. 1).
For example, Coleochaete, with its sturdy cell wall and complex
bodyplan, tolerates desiccation (Graham et al., 2012) but is not in
fact terrestrial – it grows in freshwater habitats (Fig. 1). Similarly,
Herburger &Holzinger (2015) found that while two species of the
KCM streptophyte algal genus Klebsormidium reinforced their cell
walls with callose upon desiccation stress, two ZCC algal species of
the genusZygnema –which aremore closely related to land plants –
did not. This is despite the fact that the cell wall polymer profile of
ZCC streptophytes is more similar to land plants than that of the
early-diverging KCM algae (Sørensen et al., 2011). Further, based
onnonphotochemical quenching analyses, twoKlebsormidium spp.
showed higher tolerance towards high light than did a Zygnema sp.
(Pierangelini et al., 2017). Overall, these data paint a very blurred
picture of the distribution of physiological properties conducive to
living on land across streptophyte algae. Indeed, terrestrial algae are
found scattered across the diversity of the entire green lineage
(Lewis & McCourt, 2004; Fig. 1). This raises the following
question: in which environment and, hence, under which selective
forces did the key features aiding the conquest of land evolve?

If such features arose whilst streptophyte algae resided in a
freshwater environment, then they were exaptations (also known
as pre-adaptations) (see Becker & Marin, 2009); they evolved for
some purpose in water and only later proved advantageous on
land. By contrast, such features could represent true adaptations,
that is, they evolved under selection pressures associated with
terrestrial life. The latter scenario was recently endorsed by
Harholt et al. (2016), who stated that ‘plants were terrestrial from
the beginning’. Both viewpoints have strengths and weaknesses,
but it is difficult to know how to weigh up their relative
contributions. Indeed, the specific traits of extant organisms can
often be interpreted in favor of one or the other depending on

one’s point of view. Consider, for example, the specific cell wall
properties that streptophyte algae share with land plants. They are
clearly conducive to a terrestrial lifestyle but are nevertheless also
found in aquatic streptophyte algae. Such characters can reason-
ably be interpreted as ancient terrestrial adaptations, but if so, then
one must also consider why they also exist in aquatic lineages. The
forces contributing to the evolution of any given trait were
undoubtedly complex and context-dependent; any given trait
must be considered in isolation, and what is an adaptation in one
environment may be an exaptation in another. In a sense, the
mystery of early land plant evolution ultimately boils down to the
question of why it was a singularity. It seems unlikely that it was
just one feature – either an exaptation or adaptation – that aided
terrestrialization. The successful land (plant) conqueror, i.e. the
ancestral embryophyte, must surely have had all the equipment
needed to overcome the challenges faced on terra firma, a toolbox
full of both adaptations and exaptations. The genome sequences of
extant plants provide a window through which to infer its contents.

III. Trait mosaicism in (higher-branching)
streptophyte algae

Evolutionary biologists are drawn to singularities. Such events
often representmajor leaps and lack clear intermediates. The origin
of landplants has long been considered a case in point. But themore
we look at large-scale sequencing data from streptophyte algae, the
more we find genes once considered land plant-specific (e.g. Hori
et al., 2014; Delaux et al., 2015; Ju et al., 2015; de Vries et al.,
2017). Furthermore, the use of such data for phylogenomics has
enhanced our understanding of the closest algal relatives of land
plants (seeWickett et al., 2014). But phylogenomics has also left us
puzzled. As noted earlier, the Zygnematophyceae, morphologically
the least complex of the higher-branching streptophyte algae,
branch as the closest algal relatives to land plants (Fig. 1). This
branching order underscores the problem of inferring the character
set of land plants’ algal ancestor.

Of course, since they last diverged froma common ancestor, each
lineage charted its own evolutionary path. In the case of the
Zygnematophyceae – and based on the complex bodyplan that the
common ancestor of Charophyceae and Coleochaetophyceae
probably had – this probably involved reductive evolution. Yet
caution is advisable. Zygnematophyceae are sometimes considered
unbranched, but they do branch and form holdfasts (see, e.g.,
Stancheva et al., 2014; andDelwiche&Cooper, 2015).Hence, the
common ancestor of all ZCC grade algae probably featured at least
a branching bodyplan (Fig. 1, insert; see also Delwiche & Cooper,
2015), from where the evolution of pseudoparenchymatous
development, as observed inColeochaetophyceae, and the complex
bodyplans of Charophyceae is just another step. Going hand in
hand with this was the evolution of features such as meristems
(Charophyceae andColeochaetophyceae; seeGraham et al., 2000),
gravitropism (Charophyceae; see Hodick, 1994), and a more
refined cellular localization of growth-mediating enzymes such as
cell wall modifiers (Herburger et al., 2017).

Delwiche (2016) recently emphasized the fact that each extant
streptophyte lineage appears to have its own set of derived and
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ancestral features. The only way to reassemble the ancestral suite of
features is thus a comparative approach. But our datasets will never
be complete. For example, within the Charophyceae, extant taxa
represent a small fraction of the diversity that existed in Devonian
times (see Feist et al., 2005), which hampers efforts to assemble a
complete trait catalogue. How can we then decide whether a given
trait is truly ancestral and not the result of convergent evolution (i.e.
a homoplasy)? Themost parsimonious approach is to assume that if
a trait is shared bymultiple lineages, it must have arisen in their last
common ancestor. This is not unreasonable, but it can result in an
additive effect whereby we must infer an ever more complex
common ancestor and, in the case of patchily distributed traits, ever
more independent losses.

Consider cell division and the concomitant formation of
primary plasmodesmata (intercellular junctions). Primary plas-
modesmata are found in Charophyceae and land plants (Cook
et al., 1997; see also Brunkard & Zambryski, 2016); the combi-
nation of a preprophase band (see Box 1) and phragmoplast
formation during cell division is limited to land plants and some
Zygnematophyceae (Buschmann & Zachgo, 2016). Hence, it is
only the ZCCgrade as a whole (in this example Zygnematophyceae
and Charophyceae) that exhibits land plant cell division traits that
combine the formation of primary plasmodesmata, a preprophase
band and a phragmoplast. Given such complexity, a more nuanced
approach to inferring trait evolution is desirable, one that includes
consideration of the molecular and biochemical underpinnings of
such traits. Once a critical threshold of genes and regulatory circuits
has been reached, the ‘evolvability’ of the characters they can give
rise to increases. This can lead to the illusion of independent origins
of certain characters, when they are in fact the product of a similar
molecular chassis. Defining the common ZCC feature list with the
goal of understanding the algal ancestor of land plants is thus not
just about specific genes, but also about pathways and genetic
potential.

A good example of latent genetic potential is the realization that
streptophyte algae possess a near-complete set of genes underlying
the so-called ‘symbiosis signaling module’, which in plants plays a
key role in establishing symbiotic interactions with mycorrhizal
fungi (Delaux et al., 2015; see also Box 2). That said, Delaux et al.
(2015) also found that downstream genes, such as those mediating
root infection and cell-specific differentiation, are only found
among land plants – probably the result of adaptive coevolution.
This example illustrates how a complex trait (i.e. root–fungal
symbiosis) can evolve from a core set of genes.

IV. Conclusions: a streptophyte algal perspective on
land plant trait evolution

Traits that are hard-wired into the biology of land plants and are
also found in streptophyte algae probably evolved in the latter. This
includes the stress signaling components discussed earlier. Never-
theless, the complexity of such traits has increased considerably, in
both streptophyte algae and land plants. Comparative studies of
streptophyte algae can help to disentangle genetic potential and
actual function, and, more generally, the role of chance and
necessity in early plant evolution.Whether gene products work the

same way today as they did in a common ancestor that lived many
hundreds of millions of yr ago is often impossible to tell. But
elucidating the functional and genetic potential of extant (ZCC)
streptophyte algae as a whole will no doubt help us to understand
plant terrestrialization. This will require extensive wet laboratory
work with the right experimental tools and resources. In that vein, a
streptophyte algal genome has already been sequenced (Kleb-
sormidium nitens; Hori et al., 2014) and several more are under way
(Rensing, 2017). Transformation protocols are also being devel-
oped (Abe et al., 2011; Vannerum et al., 2011; Sørensen et al.,
2014). Streptophyte algae are thus gradually emerging as useful
model systems (Chang et al., 2016) with which to test hypotheses
about the genetic underpinnings of land plant evolution. If the past
decade is any indication, the next 10 years should be full of
surprises.
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