Running a WF simulation in shadie
¶
We will start with a simple example using the Wright-Fisher model.
shadie
provides a standard Wright-Fisher Model, as well as some alternatives (e.g. the Moran model). These models are implemented as SLiM nonWF models.
Running the Wright-Fisher¶
The classic Wright-Fisher Model makes the following assumptions:
- Discrete, non-overlapping generations
- Random mating between hermaphroditic individuals
- Constant population size (of diploid individuals; 2N haplotypes)
- No fitness effects; simulation is neutral (no selection)
- No recombination
- Note that the default recombination rate in
shadie
is NOT 0.0, so to meet this requirement you must be sure to set it in the initialize function
- Note that the default recombination rate in
- Infinite sites
shadie
uses context manager to check model parameters before running a simulation. The syntax requires the user to define a model using a with
statement and then defining all parameters. The model needs a .initialize()
function, which takes general parameters such as the chromosome, mutation rate, recombination rate, and file names. You can also specify what kind of reproduction the model will use with .reproduction.
followed by the appropriate function (a list of options can be seen in Jupyter Notebooks by pressing tab after typing .reproduction.
.
See the example below:
import shadie
default_chrom = shadie.chromosome.default()
with shadie.Model() as WF_model:
WF_model.initialize(
chromosome=default_chrom,
recomb_rate=0.0,
sim_time=1000,
file_out="WF.trees",
)
WF_model.reproduction.wright_fisher(pop_size=1000)
Now, your model exists as the model object you defined, in this case WF_model
. You can print the model script by running:
print(WF_model.script)
initialize() { // model type initializeSLiMModelType("nonWF"); // config initializeRecombinationRate(0.0, 10000); initializeMutationRate(1e-08); initializeTreeSeq(simplificationInterval=NULL); // MutationType init initializeMutationType('m2', 0.1, 'g', -3.0, 1.5); initializeMutationType('m3', 0.8, 'e', 0.04); c(m3, m2).haploidDominanceCoeff = 1.0; c(m3, m2).convertToSubstitution = T; // ElementType init initializeGenomicElementType('g1', c(m2,m3), c(8,0.1)); initializeGenomicElementType('g2', m2, 1); // Chromosome (GenomicElement init) types = rep(g1, asInteger(floor(1999/3))); starts = 2001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); types = rep(g2, asInteger(floor(1999/3))); starts = 4001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); types = rep(g1, asInteger(floor(1999/3))); starts = 6001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); // constants (Population sizes and others) defineConstant('K', 1000); // globals (metadata dictionary) defineGlobal('METADATA', Dictionary('file_in', 'None', 'file_out', 'WF.trees', 'mutation_rate', '1e-08', 'recomb_rate', '0.0', 'model', 'shadie WF', 'length', '1000', 'spo_pop_size', '1000', 'gam_pop_size', 'NA', 'spo_mutation_rate', '1e-08', 'recombination_rate', '0.0', 'selection', 'none', 'gens_per_lifecycle', '1')); // extra scripts (Optional) } // executes before offspring are generated // define starting diploid population. 1 first() { sim.addSubpop('p1', K); } // generates offspring // WF model with no selection; random mating reproduction(p1 ) { subpop.addCrossed(individual, subpop.sampleIndividuals(1)); } // implements survival adjustments // non-overlapping generations survival() { return (individual.age == 0); } // executes after selection occurs // end of sim; save .trees file 1001 late() { sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); sim.treeSeqOutput('WF.trees', metadata = METADATA); }
If desired, this script can be copied and pasted into the SLiMgui, or saved as a file and run using the command line.
To run the model in shadie
, simply call the run()
function:
WF_model.run()
The output of the SLiM simulations, a .trees
file with the indicated file_out
name, should now be located in your working directory.
Access the Tree Sequence¶
You can inspect the output of the simulation using the postsim
module.
postsim = shadie.postsim.OneSim("WF.trees", default_chrom)
postsim.tree_sequence
🌿 INFO | one_sim.py | shadie assumes sims were run without a burn-in and without neutral mutations and will recapitate and mutate (add neutral mutations) any loaded sims by default. Current settings: Recapitate: True Add neutral mutations: True 🌿 INFO | one_sim.py | Simulation currently has 1 existing mutations of type(s) {2}. 🌿 INFO | one_sim.py | Mutating using mutation rate: 1e-08. Keeping 6 existing mutations of type(s) {0, 2}.
|
|
---|---|
Trees | 1 |
Sequence Length | 10001.0 |
Time Units | ticks |
Sample Nodes | 7513 |
Total Size | 783.9 KiB |
Metadata |
dict
SLiM:
dictcycle: 1001file_version: 0.8 model_type: nonWF name: sim nucleotide_based: False separate_sexes: False spatial_dimensionality: spatial_periodicity: stage: late tick: 1001
user_metadata:
dict
file_in:
listNone
file_out:
listWF.trees
gam_pop_size:
listNA
gens_per_lifecycle:
list1
length:
list1000
model:
listshadie WF
mutation_rate:
list1e-08
recomb_rate:
list0.0
recombination_rate:
list0.0
selection:
listnone
spo_mutation_rate:
list1e-08
spo_pop_size:
list1000 |
Table | Rows | Size | Has Metadata |
---|---|---|---|
Edges | 7520 | 235.0 KiB | |
Individuals | 2000 | 197.1 KiB | ✅ |
Migrations | 0 | 8 Bytes | |
Mutations | 6 | 1.5 KiB | ✅ |
Nodes | 7521 | 279.7 KiB | ✅ |
Populations | 2 | 2.4 KiB | ✅ |
Provenances | 4 | 7.0 KiB | |
Sites | 6 | 160 Bytes |
Plot the tree sequence using the draw_tree_sequence()
function. This function samples 10 haplotypes by default:
postsim.draw_tree_sequence();
NOTE: The default Wright Fisher model in shadie is the classic model, which has no selection. Even if non-neutral mutation types are defined and occur, they do not affect the simulation outcome.
Breaking the Assumptions of Wright-Fisher¶
There is a parameter in the shadie
Wright-Fisher models, selection
, that controls what kind of selection can occur in the model. Adding selection will break the neutrality assumption of the Wright-Fisher.
There are two options for adding selection:
- soft selection: fitness affects mating success only
- hard selection: fitness affects survival only
Soft and hard selection are implemented in the examples below. These examples also break the no recombination assumption, simply by passing a non-zero value to the recomb_rate
parameter.
with shadie.Model() as WF_soft_model:
WF_soft_model.initialize(
chromosome=default_chrom,
recomb_rate=1e-9,
file_out="WF_soft.trees",
)
WF_soft_model.reproduction.wright_fisher(
pop_size=1000,
selection= "soft",
)
with shadie.Model() as WF_hard_model:
WF_hard_model.initialize(
chromosome=default_chrom,
recomb_rate=1e-9,
file_out="WF_hard.trees",
)
WF_hard_model.reproduction.wright_fisher(
pop_size=1000,
selection= "hard",
)
WF models incorporating selection may be more appropriate to use as control simulations to compare against simulations with complex life cycle models.
Alternative Models in shadie
based on Wright-Fisher¶
Because the life cycle models in shadie
incorporate alternations of generations and both haploid and diploid individuals, there are further modifications to the Wright-Fisher model that may be useful. The same three options for selection ("none", "soft" and "hard) are available for each of them.
Moran Model¶
The Moran model is a simple alternative to Wright-Fisher that allows overlapping generations.
with shadie.Model() as moran_model:
moran_model.initialize(
chromosome=default_chrom,
recomb_rate= 0.0,
file_out="moran.trees",
)
moran_model.reproduction.moran(pop_size=1000)
Haploid Models¶
The default Wright-Fisher model usually assumes diploid individuals. There are two haploid Wright-Fisher models in shadie
:
- clonal: A single parent is chosen N times with replacement; each time a parents is chosen it produces one offspring
- sexual: The parent genomes undergo reocmbination and one offspring is produced per pair. This requires recombination rate != 0.0 Both models have all three selection options: "none", "soft", and "hard".
with shadie.Model() as WF_1N_clonal_model:
WF_1N_clonal_model.initialize(
chromosome=default_chrom,
file_out="1N_clonal.trees",
)
WF_1N_clonal_model.reproduction.wright_fisher_haploid_clonal(pop_size=1000)
with shadie.Model() as WF_1N_sexual_model:
WF_1N_sexual_model.initialize(
chromosome=default_chrom,
recomb_rate=1e-9,
file_out="1N_sexual.trees",
)
WF_1N_sexual_model.reproduction.wright_fisher_haploid_sexual(
pop_size=1000,
selection="soft"
)
Alternation-of-Generations "Wright-Fisher"¶
This is a highly altered Wright-Fisher model that incorporates alternation of generations, which may be useful as a control or comparison to more complex models with alternation-of-generations.
with shadie.Model() as WF_altgen_model:
WF_altgen_model.initialize(
chromosome=default_chrom,
recomb_rate= 0.0,
file_out="moran.trees",
)
WF_altgen_model.reproduction.wright_fisher_altgen(
spo_pop_size=1000,
gam_pop_size=1000,
selection="hard"
)
print(WF_altgen_model.script)
initialize() { // model type initializeSLiMModelType("nonWF"); // config initializeRecombinationRate(0.0, 10000); initializeMutationRate(1e-08); initializeTreeSeq(simplificationInterval=NULL); // MutationType init initializeMutationType('m2', 0.1, 'g', -3.0, 1.5); initializeMutationType('m3', 0.8, 'e', 0.04); c(m3, m2).haploidDominanceCoeff = 1.0; c(m3, m2).convertToSubstitution = T; // ElementType init initializeGenomicElementType('g1', c(m2,m3), c(8,0.1)); initializeGenomicElementType('g2', m2, 1); // Chromosome (GenomicElement init) types = rep(g1, asInteger(floor(1999/3))); starts = 2001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); types = rep(g2, asInteger(floor(1999/3))); starts = 4001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); types = rep(g1, asInteger(floor(1999/3))); starts = 6001 + seqLen(integerDiv(1999, 3)) * 3; ends = starts + 1; initializeGenomicElement(types, starts, ends); // constants (Population sizes and others) defineConstant('SPO_POP_SIZE', 1000); defineConstant('GAM_POP_SIZE', 1000); // globals (metadata dictionary) defineGlobal('METADATA', Dictionary('model', 'shadie haploid clonal WF', 'length', '1000', 'spo_pop_size', '1000', 'gam_pop_size', '1000', 'spo_mutation_rate', '1e-08', 'selection', 'hard', 'recombination_rate', '0.0')); // extra scripts (Optional) } // executes before offspring are generated // define starting haploid population. 1 first() { sim.addSubpop('p1', SPO_POP_SIZE); sim.addSubpop('p0', 0); } // generates offspring // clonal random mating; mating success weighted by fitness. reproduction(p1 ) { // parents are chosen randomly fitness = p1.cachedFitness(NULL); parents = sample(p1.individuals, GAM_POP_SIZE, replace=T); for (i in seqLen(GAM_POP_SIZE)){ breaks = sim.chromosome.drawBreakpoints(parents[i]); p0.addRecombinant(parents.genome1[i], parents.genome2[i], breaks, NULL, NULL, NULL); } self.active = 0; } // generates offspring // clonal random mating; mating success weighted by fitness. reproduction(p0 ) { // parents are chosen randomly fitness = p0.cachedFitness(NULL); parents1 = sample(p0.individuals, SPO_POP_SIZE, replace=T); parents2 = sample(p0.individuals, SPO_POP_SIZE, replace=T); for (i in seqLen(SPO_POP_SIZE)) p1.addRecombinant(parents1.genome1[i], NULL, NULL, parents2.genome1[i], NULL, NULL); self.active = 0; } // executes after offspring are generated // Fitness scaling for hard selection early() { // diploids (p1) just generated haploid into p0 if (community.tick % 2 == 0) { // fitness affects haploid survival p0.fitnessScaling = GAM_POP_SIZE / p0.individualCount; } // haploids (p0) just generated diploids into p1 else { //fitness affects diploid survival p1.fitnessScaling = SPO_POP_SIZE / p1.individualCount; } } // implements survival adjustments // non-overlapping generations survival() { return (individual.age == 0); } // executes after selection occurs // end of sim; save .trees file 2001 late() { sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); sim.treeSeqOutput('moran.trees', metadata = METADATA); }